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SOME GRAVITY WAVE PROBLEMS IN THE MOTION OF
PERFECT LIQUIDS

By J. C. MARTIN, W. J. MOYCE, W. G. PENNEY, F.R.S.,
A. T. PRICE anp C. K. THORNHILL
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p
A
JA '\

A A

o GENERAL CONTENTS
— : PAGE
;5 > General Introduction. By W. G. Penney, F.R.S. 231
olm Part I. The diffraction theory of sea waves and the shelter afforded by breakwaters. By W. G.
e E Penney, F.R.S. and A. T. Price ~ 236
O Part II. Finite periodic stationary gravity waves in a perfect liquid. By W. G. Penney, F.R.S. and
T @) A. T. Price 254
=w Part III. The dispersion, under gravity, of a column of fluid supported on a rigid horizontal plane.
—n By W. G. Penney, F.R.S. and C. K. Thornhill 285
SCZD Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane.
E: By J. C. Martin and W. J. Moyce ' 312
82 5 Part V. An experimental study of the collapse of fluid columns on a rigid horizontal plane, in a
8% medium of lower, but comparable, density. By J. C. Martin and W. J. Moyce 325
—
EE (Abstracts are printed at the head of each paper)

GENERAL INTRODUCTION
By W. G. PENNEY, F.R.S.

Five papers on various problems of gravity waves in perfect liquids are being published
together; the first three papers are entirely theoretical, but the last two include a description
of various experiments made to check and extend the mathematical investigations contained
in the third paper. v

Part I, by Penney & Price, considers the diffraction pattern produced by a semi-infinite
straight breakwater inclined at any angle to the direction of approaching parallel harmonic
infinitesimal sea waves. The spread of the waves into the lea of the breakwater is par-

) ¢

7~

- ticularly interesting. The wave patterns behind gaps, and other extensions of the theory,
;5 P are also developed. _ '

ol Part II, by Penney & Price, attempts to deal with the extremely difficult mathematical
e problem of finite stationary periodic gravity waves in a perfect liquid of any depth. An
E 8 alternative formulation of this problem can be made in terms of the periodic finite oscilla-
~ o tions of a perfect liquid in a rectangular tank. No rigorous proof is obtained that periodic

finite oscillations are possible, but at any rate, the equations can be solved by successive
approximations, to any order required. Some comments are also made on the proof of
Levi-Civita (1925) that irrotational progressive plane finite waves on deep water are
possible. The proof as given only establishes the existence of small waves, none the less
finite, and does not cover the more interesting cases of waves approaching in height those
of the limiting form, treated first by Stokes (1880), where the crests are nodes of semi-angle
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232 W. G. PENNEY

60°. The proof of the existence of periodic stationary finite waves appears to be much more
difficult to develop than the proof of progressive finite waves. A discussion is also presented
in part IT of the existence of a limit to the wave height of stationary waves of permanent
form. \

Part I11, by Penney & Thornbhill, treats the motion of the collapse of a column of a perfect
liquid resting on the bottom and surrounded by a second lighter liquid resting on the same
bottom. The system is supposed to be released from rest. Various shapes of column, such as
the hemi-cylinder or hemi-sphere, resting on the diametral plane, are considered, and some-
times, for simplicity, the lighter liquid is taken to be of zero density (i.e. no second liquid
present). An approximate method, using characteristics, is found giving the motion for
columns which are squat in form. A numerical solution, using ‘relaxation’ methods, for
the collapse of a rectangular column is presented in the Appendix by Dr L. Fox and Dr E. G.
Goodwin of the Mathematics Division of the National Physical Laboratory.

Part IV, by Martin & Moyce, describes experiments made to check and extend the mathe-
matical results contained in part ITI. This paper confines itself to liquid columns released
from rest in air, and the experimental results are compared with those given by the theory
in the case where the second fluid is of zero, or at any rate negligible, density. The agree-
ment between the experimental results and the theory is satisfactory.

Part V, by Martin & Moyce, uses a different technique from that described in the
previous part. A method of releasing a liquid column from rest in a second liquid of lesser
density is described, and the subsequent motion, as followed by ciné photography, is
presented. A range of density ratios for the two columns was tried ; and an attempt made to
scale the results to the observations made on the ‘base surge’, appearing after the explosion
underwater of the second atomic bomb at Bikini (see later photographs). It is concluded
that no less than 120,000 tons of water were thrown into the air, mostly in the form of fine
drops.

The first two papers were inspired by problems expected to be encountered in the use
of the Mulberry harbours of Operation Overlord. The last three were suggested by the
results of the second atomic bomb explosion at Bikini.

The theory of the behaviour of sea waves, when interrupted by breakwaters, acquired
a special importance during the war in connexion with the construction of the Mulberry
harbours. The obvious necessity for using the absolute minimum of material, time and
labour in the construction of these temporary harbours made it imperative to have the most
exact information possible, when solving the formidable engineering problems involved.
In particular, the calculations relating to the breakwaters were required to be based on
a theory made as exact as possible. ' ‘

Some of the engineering problems arising in the conception of the Mulberry caissons are
fully described in papers by Jellett, Pavry and Wood presented in 1947 at the Conference
on War-time engineering problems, and published under the title T%e civil engineer in war
(1948), sponsored by the Institution of Civil Engineers. Interesting new points were also
brought out in the discussion. Another paper presented at the same conference by Lochner,
Faber and Penney (1948) describes the Bombardon or floating breakwater. Parts I and II,
now presented, made little or no contribution to the design of the breakwater structures, but
they were of some assistance in the prognosis of wave conditions inside the harbours. There


http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

GENERAL INTRODUCTION 233

is no doubt that the ‘infinitesimal theory’ of the wave pressure, together with large safety
factors, are sufficient for the practical approximations of civil engineering. In this sense,
part II is too elaborate and academic for the practical engineer, but at least it is useful for
estimating the errors in the ‘infinitesimal theory’ and thus revealing how much of the
safety factors are to be taken up in covering purely mathematical uncertainties.

Parts III, IV and V relate to the ‘base surge’, one of the most terrifying features of an
explosion of an atomic bomb in water. A full description of the base surge observed at Bikini,
together with complete dimensions as functions of time, will be found in T%e effects of atomic
weapons, a book sponsored by the United States Atomic Energy Commission (1950). A
photograph of the base surge is printed in part V. Reproductions of other photographs of
the base surge will be found in Operation Crossroads by the Historian of Joint Task Force
One (1946).

A large underwater explosion throws water vertically upwards. The ‘water column’ is
not solid water, but contains a considerable quantity of air. If the explosion is near to the
surface, the water column contains relatively little water, and if the explosion is large, most
of the water breaks up into drops due to the aerodynamic forces caused by the air. Soon
after the explosion, the mixture of water drops and air collapses on to the sea, and provided
the drops are fairly fine, the mixture of water drops and air moves almost as if it were a single
fluid. Before long, of course, the water drops sediment downwards through the air on to
the sea, but in the early stages, the differential falling motion of the water drops through the
air can be neglected.

Any large explosion in shallow water would cause a base surge, but the reason why the
phenomenon has singular importance for atomic explosions is that in this case the base
surge contains all, or nearly all, of the deadly fission products.

The interrelationships between the five papers are as follows. Parts IT and III are
mathematically similar. Both deal with an irrotational motion of a perfect liquid and make
series expansions for the velocity potential; both involve a moving unknown interface over
which a boundary condition on pressure must be satisfied; both involve the time variable
explicitly. Part I is related to part IT in that both deal with breakwater problems, but the
mathematical difficulties always encountered in diffraction problems precludes any attempt
at dealing with finite waves in part I. Parts IV and V provide direct experimental evidence
on the motions of the types considered in part ITI. :

Finally, it is not out of place here to call attention to two similar mathematical points of
great complexity in the following series of papers. The first point concerns the maximum
amplitude of the finite stationary periodic wave in deep water; the second concerns the angle
of contact at the ground of the expanding edge of a column of collapsing perfect incom-
pressible fluid. :

The maximum amplitude which the waves can have without losing their permanent
periodic form is determined by a condition obtainable in several ways, explained fully in
part III. In order to illustrate the mathematical difficulties encountered in the problem,
however, we confine attention here only to one form of the limiting condition, namely, that
the amplitude of the waves must be such that the wave motion never requires the maximum
downward acceleration at any point in the free surface to exceed g; otherwise this part of

the surface is unstable.
‘ 30-2
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234 W. G. PENNEY

Instability first appears in the motion for arbitrary wave height at the crest at the instant
of greatest height. Now the elementary theory of infinitesimal stationary waves leads to
the following formula for the surface elevation:

Y= (A)l/27r) sin {(2ng/A)* ¢} cos 2mx/A. (1)
The criterion of stability is considered to be
—-¥< 8. (2)
Hence from (1), at the crest (x = 0) at its greatest height, we find that
A4A<1. (3)

Admittedly, this value of 4 is far from infinitesimal. However, another approximate
limiting value of 4 can be found from the velocity potential.
The velocity potential used in obtaining (1) is

¢ = gt(/2m)* A e2mv/Acos{(2mg/A)* ¢} cos 2mx/A. (4)

The upward vertical velocity v is —d@/dy. The acceleration at the crest at its greatest
height is easily shown from (4) to be —gAd e4. For stability, we require this to be greater
than —g. Hence, for stability, Aded<] ‘ (5)

The maximum value of 4 by this approach is 0-567.

A simple physical argument which destroys confidence in either of the results (3) or (5)
can be advanced. According to the infinitesimal theory of stationary waves, and, indeed,
according to our theory valid to any order, the periodic stationary wave motion can be
generated from rest by imagining the surface modulated to the correct shape and the con-
straining surface suddenly removed. Now, the condition of stability so far postulated is
that the downward acceleration must not exceed g. The question arises as to how it is possible

“for any particle in the surface of a mass of fluid with a modulated surface at zero pressure,
released from rest, to acquire a downward acceleration greater than or equal to g. We
conclude that the crest of the maximum wave at its greatest height is a singular point and
that it is a node enclosing a total angle of 90°. The slope at the crest is therefore 4-45°, and
the initial downward acceleration at the node is just g.

We have now run into a formidable mathematical problem. The first-order theory (i.e.
the infinitesimal theory) gives a smooth cosine profile; any higher order theory to finite
order also gives a horizontal gradient at the peaks. To find the limiting wave height we
require the gradient of the profile to be discontinuous at the peaks. The mathematical
difficulty is to some extent avoided by obtaining from the hydrodynamical equations to
any order the downward acceleration at the peaks. By equating this to g, we obtain a reason-
ably accurate expression for the wave parameter 4. Our equations to the fifth order give
us the profile accurately everywhere except near the peak, give the height of the peak with
fair accuracy, but give the slope at the peak zero instead of 45°. The value of 4 lies between
the values given in (3) and (5) above, but the wave profile at the tip is distinctly different
in shape. ‘

The second difficult mathematical point appears in part ITI. The angle of contact at the
ground of the collapsing column can be made initially any value between 0 and 7. Professor
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GENERAL INTRODUCTION 235

H. Jeffreys has kindly supplied a proof that in the steady state, the angle of contact must be
either 60° or 0; and experiments on ‘gravity currents’ mentioned by von Karman (1940)
suggest that 60° is the true angle. In our work, we assume that the shape of the surface of the
collapsing column can be expanded either in terms of orthogonal functions (cosines or
Legendre polynomials) or as a power series in the polar angle §. With the cosine or Legendre
expansions, the angle of contact remains 90° with any finite expansion. With four or five
term expansions in ¢, however, the angle of contact does not seem to be approaching 60°.
Indeed, the angle of contact is getting continuously smaller, and is apparently approaching
zero. The numerical solution of Fox & Goodwin also suggests a limiting angle of zero.
Possibly, the limiting angle really is zero for a column collapsing iz vacuo but is 60° for a
column collapsing in a second fluid. Another possible explanation is that the expansions
must include many more terms than we have been able to manage before such a fine detail
as the angle of contact at the ground is adequately represented.
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